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If the relative drop of temperature in slow flows past solids is of the order of 
unity, then the Bamett temperature stresses appearing in the impulse ecpatiOn 

are, for the Reynolds numbers R, < i, of the order of the usual viscous stfes- 
ses [l, 21. The problem of a gas flow past an uniformly heated (cooled) 
sphere with the above-mentioned temperature stresses taken into account and 
I<Jc-&i * is solved for the case when the effect of the gravitational convec- 
tion is inessential.Tine temperature stresses lead to considerable reduction in 

the drag of the sphere compared with the value obtained with the help of the 

Naviet-Stokes equations [3]. 

Slow (M, < 1) flows past uniformly heated (cooled) bodies with fl, & 0 (1) 
are described by the following dimensionless equations of conservation and the boundary 

conditions [l] 
T’v = (v-V In ZJ (1) 

zj3 (v. V In 1’) = V (TV1’) (2) 

y-1 (v. C) v + T’11 z l-P - 3/$ (VT)2 VT + 

26 (v . G In T) VI’ .- 3/26V [ 1’ (VT)*1 (3) 

11 -- .‘I -t q$v.W), 11’1’ = -2&J _$ + _.& ( du. 
- 6ijVV 

> 
(4) 

I 1 

It is assumed that the external forces can be neglected. Following [I] it can be shown 
that the influence of the gravitational convection is inessential in the case of a sphere 
provided that I.” < v,~ .R, / g where g is acceleration due to gravity. Under the nor- 

mal conditions and A, + 10-i to lWa we have practically L < lGm2 cm. The above 

equations hold with the accuracy of the order 0 (K?), where h’ is the Knudsen number. 

In an unperturbed flow we have 

v = R,e, T=l 
(5) 

At the surface of the body we have 

v = 0, T - T, (6) 

with the accuracy of the order 0 (K) (this is the order of the velocity and temperature 

jumps at the walls). 
The stream velocity is u -- li. \ and the “viscous” velocity is [l] v v, j L. 

The coordinates (.c,, x2, x3) :.: (x, y, z) are relative to the characteristic dimension 
L; the temperature Y’, pressurep , etc. are related to their values in the unperturbed 
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flow, therefore 

i.e. st is the dime~ionless variable part of the pressure. The density p is eliminated 

using the equation of state. 

Here and below we consider a monatomic gas of Maxwellian molecules, when the 
dimensionless coefficient of viscosity is /.I 1~ T and the ratio of specific heats and 

the Prandtt number are bf, and */, , respectively. The coefficient 6 =- I is introduced 
to single out the Bamett terms of the impnlse equation, Expressions for iJ and II;@) 

are written in a form somewhat different from that in [lf, and more suitable for COW- 

paring our solution with the solution obtained within the framework of the Navier-Stokes 
equations (we note that at the body surface n ;-= n). The navier-Stokes equations hold 

(6 = 0) if for a fixed R, the quantity T, -+ 1 . 

The variable part of the stress tensor at the wall, with the no-slip conditions and Eqs. 

(1) and (2) taken into account. has the form 

If H, = 0 (i. e. uoo = 0), then we generally have a thermally stressed convective 

flow at tne body, with velocities ( l ) of the order of Y (at ?‘,,: - 1 7 0 (i)), the con- 

vection governed by the Bamett temperature stresses and described by the complete sys- 

tem of equations (1) - (4). This convection may lead to appearance of a “thermal stress” 
force acting on the body. 

When R, <. 1 , the incoming flow has only a perturbing effect and the solution 
should be sought in the form 

6% 
v = vs + ev, + . . ., T = To + El‘, -{- . . _, n. .-- n, + &Xi + . . ., &.= If, 

The flow past a sphere of radius r. -= i is an exception, In this case the gas is at rest 

when U, - 0 p], i.e. vO 27 0 and h t e energy equation (2) yields the Laplace’s equa- 

tion for To*, from which we obtain 

T, =z (1 -i_ 0 ,’ r)“r, ti = Tw2 - 1 ('j) 

The temperature stresses lead only to redistribution of the pressure no along r (the 

length r of the radius vector is counted from the center of the sphere and below we use 

a spherical ( r, 0, rp) -coordinate system). For this reason, when the flow past a sphere 

has the Reynolds number fi, < $ , the characteristic velocity is not V but U-. 

Let us replace vr by the gas velocity U relative to uoD. Then Eqs. (1). (3) and (4) 

become 
Vu = (u . V In To) + 0 (R,) 

/!,T;‘(u. t) u + VT, = @’ -1- 26 (u .V In To) CT0 - 3i26 {(VT,)* VT1 + 

2(CT,,.V7’,)07’0 + V [2TO(VT0.VT,) -I- TI(L’To)*]} + O(R,) (11) 

l ) If TW $D I , then the conditions at the wall are typical 111, in particular we have 
L z= v, ‘I I,. 
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An expression for fl, is obtained in the analogour manner. When the temperature stres- 

ses are discarded (6 == 0) and terms of the order 0 (k) neglected, the system (lO)- 
(12) describes, within the framework of the Navier-Stokes equations, the known problem 
[3] of a “Stokes” flow past a heated sphere. The procedure of matching the outer and 
inner asymptotic expansions [4] must be employed to obtain the further terms of expan- 

sion of the solution into a series in R, 
In the case under consideration, the situation is different The impulse equation in- 

cludes T, and the energy equation in the first approximation must be solved simultan- 

eously with (10) and (11). We obtain T, using the method of inner and outer expansions. 

The energy equation written in the (inner) variables introduced above, has the form 

2 H, aT 
:I 7 lcj F = 

In the outer variables 0 = /i,r and Xi = RmXi it becomes 

(13) 

We denote for convenience the functions of the outer variables with an upper asterisk. 

The inner and the outer expansions have the form 

T = T,, f R-T, + . . . . u=u,,+Raoul+... (15) 

T* = 1 + R,T1? $- . . . . u* -z e, + R-q*. . (16) 

Here T, is given by (9). while ZI1 and T,* satisfy the following equations: 

VaToTl = &o, -$ (17) 

VZT * _ 2 “1/‘l1” 
1 3 d.\ (18) 

The last equation is reduced to the Helmhotz equation 

VYJ = =I&, Q z e-‘!JT, * 

whose solutions are well known. Using the conditions of boundedneu of the solution at 

P* 00 and the principle of minimum singularity [4] at p + 0, we choose the follow- 
ing solution of this equation : 

52 = Cp .l exp (- ‘/sp) 

where c is a function of R,. To find T, (r -+a~, 0) we match the two-term inner 
and outer expansions 

T = (I+ +)‘” + R.21 (r, O), T*=l+ R,+expv 

Applying the standard methods [4] we obtain C = o / 2 and 

T, (00, 0) = Ve w (cos 8 - 1) (1% 

Taking (19) into account, we seek the solution of the problem in the form 

Ur = f (r) Cost), &J = -g (r) sine, l7, := h (r) cos 8 + m (r) 

T1 = To-l b# (r) -t t (F, @)I, t = T (F) COS 8 (20) 

with the boundary conditions 
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,I (I. :: : 0. l.p = 0, T = 0 (r - 1) 

f + 1. ,g - 1, T-+ o/6, 9-+-_0/6 (r--Pm) (21) 

Inserting (20) into (17) we see that the variables separate, 9 = (0 (1 - r) / (6r) and 
r satisfies the equation 

t” t _++ -+~r_(, (22) 

The temperature stresses expressed in terms of II, determine m(r), i. e. they cause a 

redistribution of the pressure along I’. therefore they are not taken into account in what 

follows. Neglecting in (30) and (11) the terms of the order of R, as compared with 
unity (the convective terms in particular) and using (20), we find 

/’ !- (2 1.) (,/ - g) - T,‘T”‘j -:- 0 (24 

IL’ - T,, [.!,I : + j’ -- -& (f - ,q) 1 - PO’,/’ -t- T&pf _I 

;(dy‘,,’ 1-y :_ + (&lT,,‘T - T’) -- + &‘T,‘j] 0 (24) 

_ /I _I_ To [ rg” .! 2,s: _j- 2r-l (f - g) ] + I‘,,’ (/‘g’ ,/ - g) - ;36T,‘T’ .: 0 (25) 

Thus the problem has been reduced to the solution of a linear system of ordinary differ- 

ential equations (22) - (25) with the boundary conditions (21). For numerical integra- 
tions these equations can he reduced to a more convenient form, using new variables 

E and 11 introduced by the formulas 

r = 1 w 1 CL. II = I.11 I‘, 

Let us now investigate the contribution of the local temperature stresses to the force 

F acting on the sphere. The third term of (7) can he written as 

3 zT,, (T,“),j -i- ’ ,II, [21’,, ($j;< ‘- T, (1’,,“1,, I- :!T,, (r)ij] 
$33 

( )tj -.-- ids’,,,,’ 

/ _ 

The first two terms of(26) make no contribution to p and the third term is equal to 

zero ( T, = 0 at the sphere). We further have 

(& T”coso, ($” -- -.- (T; r)‘sirr 0 

The contribution of the local temperature stresses to p IS zero. Indeed. it is proportlon- 
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al to X 

s 
’ ((t),,cosO - (t),Bsin8] sin0 de = (1 - 3~0s” 0) sin 8 de = 0 

” 0 

Here we used Eq. (22) and the fact that at the wall f = 0. Thus we see that, as in tne 
Navier-Stokes approximation, the force F acting on the sphere is an integral of the 

pressure and the viscous stresses over its surface, the latter however no longer defined by 

the Navier-Stokes equations 
F = 21s (2g’T - h)r,lF~, FS = ti.zf),,b~‘~ (27) 

Here k”,s is defined by the Stokes formula. 
Results of the computations utilizing Eqs. 

(22) - (25) have shown that the temperature 
stresses exert no appreciable influence on 

the velocity field, but lead to a sharp decrease 

in the value of F when T, are large. The 
latter can be explained by a decrease (in 

absolute magnitude) in the value of the 

asymmetric component J+, (r) cos 8 of the 
pressure where 

n,h = h - ‘/, (40 - 1) jT,‘_ 

Fig. 2 Figures 1 and 2 show the results of com- 

putations with the temperature stresses taken 

into account (a = 1) using the solid lines and those without the temperature stresses 

(b = U) , using the broken lines. The dash-dot line in Fig.1 was computed by the formula 

(4.6) of @] derived by linearizing the solution, in the Navier-Stokes approximation 

with (T, - l)< 1 relative to the Stokes solution. The graphs in Fig.2 are obtained for 
T, = 4. When r = 1 and 6 = 0 the value of .11h --; --3.66. 

Experimental data available [5] show that F illc.reases with increasing T,, the effect 

becoming more pronounced,tilc smalll:r R, I?. l’ixw dara \\L’rc. Ilowever, obtained for 

R, > 2 under the conditions which made possible T:I~ manifestation of the effects of 

free gravitational convection. 

BIBLIOGRAPHY 

1. Galkin, V.S., Kogan, M. N. and Fridlender, 0. G.. On free convec- 

tion in gas in the absence of external forces. Izv. Akad. Nauk SSSR. MZhG. 

No3, 1971. 

2. Galkin, V.S., Kogan. M. N, and Fridlender. 0. G., On certain kine- 
tic effects in the flows of continuous medium. Izv. Akad. Nauk SSSR, MZhG, 

W3, 1970. 
3. Kassoy, D, R, , Adamson. T.C. and Messiter.A.F., Conlpressihle low 

Reynolds Number flow around a sphere. Phys. Fluids, Vol. 9, N”4. l!%f;. 
4. V an D y k e , M i 1 ton , Perturbation Methods in FIllid Mechanics. Acad. Press, 

N.Y. and London, 1964. 

5. Basina. 1. P. and Maksimov, I. A., Influence of nonisothermal behavior 
on drag of a spherical particle. Coil. : Problems of thermoenergetics and 
applied thermophysics. Np5. Alma- Ata, “Nauka”, 1969. 

Translated by I.. K. 


